

Geology and Oil-gas Business Institute named after K. Turyssov Department of Chemical and Biochemical Engineering

EDUCATION PROGRAM

8D07116 CHEMICAL TECHNOLOGY OF ORGANIC SUBSTANCES AND MATERIALS

Code and classification of the field of education: 8D07 «Engineering,

manufacturing and construction industries»

Code and classification of areas of study: 8D071 «Engineering and Engineering»

Group of educational programs: D097 «Chemical engineering and processes»

Уровень по НРК: 8

Уровень по ОРК: 8

Year of study: 3

Credits: 180

Almaty 2025

The educational program 8D07116 " Chemical technology of organic substances and materials" was approved at the meeting of the Scientific Council of KazNTU named after K.I.Satpayev

Protocol №10 from «06» 03 2025y

Reviewed and recommended for approval at a meeting of the Educational and Methodological Council of K.I.Satpayev KazNTU

Protocol №3 from «20» 12 2024y

The educational program D07116 "Chemical technology of organic substances and materials" was developed by the academic committee in the direction D097 «Chemical engineering and processes»

Name	Academic degree/ academic	Post	Place of work	
Chairman of the	Academic Com	mittee:		
Selenova Bagadat Samatovna	Doctor of Chemical Sciences	Professor	Kazakh National Research Technical University named after K.I.Satpayev	Set
Teaching staff:				
Mangazbaeva Rauash Amantaevna	Candidate of Chemical Sciences	Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev	Shan
Aitkalieva Gulzat Slyashevna	Doctor phD	Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev	Styg
Employers				
Seitenova Gaini Zhumagalievna	Candidate of Chemical Sciences, Associate Professor	Head of the Project Office	Petro Gas Chemical Association,	cyt
Students:				Α-
Bogdanova Violetta	•	Student	Kazakh National Research Technical University named after K.I.Satpayev	sneght

Table of contents

	List of abbreviations and designations	
1.	Description of educational program	4
2.	Purpose and objectives of educational program	4
3.	Requirements for the evaluation of educational program learning	5
	outcomes	
4.	Passport of educational program	6
4.1.	General information	6
1.2.	Relationship between the achievability of the formed learning	9
	outcomes according to educational program and academic	
	disciplines	
5.	Curriculum of educational program	16

List of abbreviations and designations

EP – Educational program

CC – Communicative competence

LO – Learning Outcomes

NJSC - Non-profit joint stock company

1. Description of educational program

The educational program is a set of documents developed by the academic committee of the Kazakh National Research Technical University named after K.I. Satpayev.

The EP considers the needs of the regional labor market, the requirements of government agencies and relevant industry requirements. The branch of organic and petrochemical synthesis, which uses oil, gas, coal as raw materials, is the leading one and determines the progress of the chemical industry - an important link in the economy of Kazakhstan. Products of organic and petrochemical synthesis, having valuable chemical and physico-chemical properties, are semi-products in the production of polymers, medicinal substances, plant protection products and other synthetic materials. And since the industry of organic and petrochemical synthesis provides raw materials for all other sub-sectors of the chemical industry that produce synthetic materials, it must develop at a faster pace.

The EP is based on the state educational standard for higher professional education in the relevant field.

The EP defines program educational goals, student learning outcomes, necessary conditions, content and technologies for the implementation of the educational process, assessment and analysis of the quality of students during training and after graduation.

The EP includes the curriculum, the content of disciplines and learning outcomes and other materials to ensure a quality education for students.

2. Purpose and objectives of the educational program

The purpose of the EP:

Training highly qualified specialists with profound knowledge, methodological competencies, and research skills in the field of chemical technology of organic substances and their processing, capable of developing and implementing innovative and environmentally safe technologies for sustainable development and successfully competing in national and international labor markets.

The objectives of this EP are:

- social, humanitarian and professional training of bachelors in the field of

chemical engineering in accordance with the development of science and production, as well as with the needs of oil and gas chemical clusters in Kazakhstan, national research centers, master's and doctoral studies of higher educational institutions;

- training of bachelors technologists who know the raw material base, methods of analytical quality control of raw materials and commercial products, production technologies and areas of consumption of organic substances and materials with fundamental training in physics, mathematics, chemistry, physical and chemical foundations of technologies for obtaining the most important classes of organic substances, production of chemical reagents (additives, surfactants, polymers) used in the production of fuels and petroleum oils, in the processes of extraction, preparation and transportation of hydrocarbon raw materials.
- providing knowledge, skills and abilities that allow analyzing problems in the field of chemical engineering and finding ways to solve them, solve engineering problems in the design of production of organic substances and materials, conduct research work in the field of synthesis and study of the properties of new chemical compounds and materials using information technologies and methods of mathematical planning of experiment.
- preparation of students for professional activities in the conditions of existing production, the formation of skills and abilities to maintain the required level of labor and production discipline; on conducting a technical and economic analysis of production; on the adoption and implementation of management decisions in the face of different opinions.

3. Requirements for evaluating the learning outcomes of an educational program

The educational program was developed by the academic committee in accordance with the State Mandatory Standards of Higher and Postgraduate Education of the Republic of Kazakhstan dated July 20, 2022 No. 2 and reflects the learning outcomes on the basis of which curricula (working curricula, individual curricula of students) and working curricula in disciplines (syllabuses) are developed. Formed learning outcomes: applies knowledge of natural science, socioeconomic and profile disciplines of biotechnology to solve practical and professional tasks of the biotechnology industry.

Formed learning outcomes: applies knowledge of natural science, socioeconomic and profile disciplines of chemical technology to solve practical and professional tasks of the technological industry.

Evaluation of learning outcomes is carried out according to the developed test tasks within the educational program in accordance with the requirements of the state mandatory standard of higher and postgraduate education.

When evaluating learning outcomes, uniform conditions and equal opportunities are created for students to demonstrate their knowledge, skills and abilities. To use modern information technologies for the collection, processing and

dissemination of scientific information in the field of production of organic substances, processing of oil, gas, coal and polymers, elastomers, paints and varnishes.

4. Passport of the educational program

4.1. General information

No	Field name	Note
1	Code and	8D07 «Engineering, manufacturing and construction industries»
	classification of the	
	field of education	
1	Code and	8D071 «Engineering and Engineering» (0710)
	classification of areas	
	of study	
3	Group of educational programs	D097 Chemical Engineering and Processes"
4	Name of the	8D07116 " Chemical technology of organic substances and materials"
	educational program	
5	Brief description of	The educational program (hereinafter EP) is a set of documents
	the educational	developed by the Kazakh National Research Technical University
	program	named after K.I. Satpayev and approved by the Ministry of Education
		and Science of the Republic of Kazakhstan. The EP considers the
		needs of the regional labor market, the requirements of government
	21.02	agencies and relevant industry requirements.
6	Purpose of the OP	Training of specialists with key and professional competencies in the
		field of production of organic substances, processing of oil, gas, coal
	0.70	and polymers, elastomers, paints and varnishes.
	OP type	new
	NQF level	8
	ORC level	8
10	Distinctive features	The EP was developed considering the Atlas of new professions and
	of the OP	competencies of Kazakhstan in the field of chemical technology of
		organic substances.
11	1	KK1.Communication
	of the educational	- Fluent monolingual oral, written and communication skills
	program:	- The ability to use communicative communication in various situations
		KK 2. Basic literacy in natural science disciplines - basic understanding
		of the scientific picture of the world with an understanding of the essence of the basic laws of science
		KK3.General engineering competencies - basic general engineering skills and knowledge, the ability to solve
		general engineering tasks and problems
		KK4.Professional competencies
		- a wide range of theoretical and practical knowledge in the
		professional field;
		- the ability to carry out the technological process in accordance with
		the regulations and use technical means to measure the main parameters
		of the technological process, the composition and properties of raw
		materials and finished products;
		KK5. Engineering and computer competencies
		- basic skills of using computer programs and software systems to solve

12 Learning outcomes of the educational program:	general engineering tasks KK6.Engineering and working competencies - skills and abilities of using technical means and experimental devices to solve general engineering tasks KK7. Socio-economic competencies - Critical understanding and cognitive ability to reason on contemporary social and economic issues KK8. Specially-professional competencies for the perception of information, setting goals and choosing ways to achieve it; - the ability to independently organize the work of performers, find and make management decisions in the field of labor organization and implementation of environmental measures; - knowledge of the principles of management, control and correction of activities in the context of teamwork, improving managerial and executive professionalism. PO1 Critically evaluate contemporary scientific concepts, methods, and approaches in the chemical technology of organic substances and polymeric materials, as well as in sustainable development. PO2 Apply the principles of sustainable chemistry and environmental safety in the design of technological processes. PO3 To develop optimized processes for the processing of hydrocarbon and polymer raw materials using digital and mathematical models. PO4 To develop new materials and polymers with specified properties for priority sectors of the economy. RO5 To use scientometric and information resources to justify the relevance and novelty of scientific developments and to conduct professional communication, including the preparation of publications, patents, and reports.
	RO6 Plan and conduct applied and fundamental research in the field of chemical technology of organic substances.
13 Form of study	Full-time
14 Training period	3 years
15 Volume of loans	180
16 Languages of instruction	Kaz, Russian and English
17 Awarded Academic Degree	Doctor of Engineering (Industry)
18 Developer(s) and authors:	Selenova B.S., Mangazbaeva R.A., Aitkalieva G.S.

4.2. The relationship between the achievability of the formed learning outcomes in the educational program and academic disciplines

№	1		Numb er of		Forme	d learı	ning ou	tcomes	es (codes)		
	-			PO1	PO2	PO3	PO4	PO5	PO6		
		CYCLE OF BA	SIC DI	SCIPL	INES						
		universit	y comp	onent							
1	Academic	Purpose: To form the system	5	V				V			
	writing	competencies of doctoral									
		students and young									
		researchers in the field of									
		academic writing as a key tool									
		for scientific communication									
		and publication activities.									
		Content: Scientific discourse									
		and academic communication;									
		Typology of scientific texts:									
		from dissertation to									
		publication; Creation of									
		original scientific content;									
		Scientific text: structure and									
		logic of construction;									
		Comparative analysis of									
		sources and preparation of a									
		literary review; Work with									
		metadata and scientometric									
		tools; Preparation of articles									
		for international peer-									
		reviewed journals; Work with reviews and the scientific									
		community; Academic mobility and grant support for									
		research; Annotations, patents,									
		reports: science beyond the									
		article; Planning of									
		publication strategy and									
		research career; English									
		language of scientific									
		communication.									
2	Methods of	Purpose: It consists in	5	V							
	scientific	mastering knowledge about	3	V							
	research	the laws, principles, concepts,									
	200001011	terminology, content, specific									
		features of the organization									
		and management of scientific									
		research using modern									
		methods of scientometry.									
		Contents: structure of									

	1			T	ı			
		technical sciences, application						
		of general scientific,						
		philosophical and special						
		methods of scientific research,						
		principles of organization of						
		scientific research,						
		methodological features of						
		modern science, ways of						
		development of science and						
		scientific research, the role of						
		technical sciences, computer						
		science and engineering						
		research in theory and						
		practice.						
3	Sustainabilit	Objective: to develop a deep	5	v				
	y Science	understanding among doctoral	3	 				
	y Science	students of the interactions						
		between natural and social						
		systems, as well as to develop						
		skills for identifying and						
		developing strategies for						
		sustainable development that						
		promote long-term human						
		well-being and environmental						
		preservation. Content:						
		complex interconnections						
		between ecosystems and						
		societies. An analysis of						
		sustainability issues at local,						
		national, and international						
		levels.						
		CYCLE OF BAS			INES			
4	G 1	compone			I			
4	Complex	Course Objective develop	5	V	V		V	
	processing	doctoral students' ability to						
	of	independently forecast,						
	-	design, and implement						
	raw	innovative approaches to						
	materials	hydrocarbon feedstock						
		processing that ensure						
		optimization of technological						
		processes, taking into account						
		feedstock composition and						
		properties, sustainable						
		development requirements,						
		and environmental safety.						
		Content: Current trends in						
		hydrocarbon feedstock						
		processing in the context of						
		the energy transition;						
		integrated technological						
		schemes and process						
	1	1		1	1			

	1							
		integration; modelling and						
		optimization in Aspen						
		HYSYS; greening production						
		(reducing the carbon footprint,						
		utilizing by-products); patent						
		search and techno-economic						
		justification of innovations;						
		pilot and industrial testing.						
		Final assessment - exam,						
		defense of a project or						
		research paper.						
5	Simulation	Course Objective develop	5			v		V
	and	doctoral students' ability to						
	optimization	design, adapt, and implement						
	of chemical	innovative methods of						
	engineering	computer modelling and						
	processes	optimization of processes in						
	F	chemical technology of						
		organic substances and						
		materials, ensuring						
		sustainable, resource-efficient,						
		and environmentally safe						
		production. Content:						
		mathematical modelling						
		(dynamic, steady-state,						
		multiphase, reaction—diffusion						
		models); integration of						
		experimental data; modelling						
		synthesis and processing of						
		hydrocarbon and polymer						
		feedstock; optimization of						
		technological schemes						
		(gradient, evolutionary, multi-						
		criteria methods); sensitivity						
		analysis, forecasting, and risk						
		management; use of Aspen						
		Plus, COMSOL, MATLAB,						
		ANSYS Fluent; digital twins.						
		Final assessment - exam,						
		defense of a project or						
		research paper.						
		CYCLE OF PRO	FILE D	ISCIP	LINES			
		COMPONEN						
6	Green	Course Objective develop	5		v			v
	chemistry in	doctoral students' ability to						
	the	design and implement						
	production	innovative, resource-efficient,						
	μ	and environmentally safe						
	and	chemical-technological						
	materials	processes and materials based						
		on the principles of green						
		chemistry, applying advanced						
L	ı	, applying advanced			l		l	

aimed at minimizing environmental impact and increasing product sustainability in the context of the Sustainable Development Goals (SDGs). Content: Concept and principles of green chemistry: 12 principles and their role in industrial chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (RFACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. Polymers with a complex of special properties in scientifically grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			11. 14. 1						1
cnvironmental impact and increasing product sustainability in the context of the Sustainabile Development Goals (SDGs). Content: Concept and principles of green chemistry: 12 principles and their role in industrial chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. Polymers with a complex of special properties of complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			digital and analytical tools						
increasing product sustainablity in the context of the Sustainable Development Goals (SDGs). Content: Concept and principles of green chemistry: 12 principles and their role in industrial chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - cxam, defense of a project or research paper. 7 Polymers with a complex of special properties complex of special properties in scientifically grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
sustainability in the context of the Sustainable Development Goals (SDGs). Content: Concept and principles of green chemistry: 12 principles and their role in industrial chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			environmental impact and						
the Sustainable Development Goals (SDGs). Content: Concept and principles of green chemistry: 12 principles and their role in industrial chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special properties Course Objective develop doctoral students' competencies in scientifically grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			increasing product						
the Sustainable Development Goals (SDGs). Content: Concept and principles of green chemistry: 12 principles and their role in industrial chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special properties Course Objective develop doctoral students' competencies in scientifically grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			sustainability in the context of						
Goals (SDGs). Content: Concept and principles of green chemistry: 12 principles and their role in industrial chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers With a complex of special grounded design, forceasting, properties with a complex of special grounded design, forceasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
Concept and principles of green chemistry: 12 principles and their role in industrial chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologics in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties in scientifically goolymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
green chemistry: 12 principles and their role in industrial chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
and their role in industrial chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special properties of technologies in scientifically grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
chemistry. Environmental assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
assessment of technologies: LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
LCA (Life Cycle Assessment) and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
and LCC (Life Cycle Cost) methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			_						
methodologies. Green reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
reagents and solvents: designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special grounded design, forecasting, properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
designing safe alternatives. Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
Innovative catalytic processes with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologics in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers Course Objective develop 5 v v with a complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a doctoral students' complex of special properties competencies in scientifically grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			designing safe alternatives.						
with low energy consumption. Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a doctoral students' complex of special properties competencies in scientifically grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			Innovative catalytic processes						
Biotechnological and enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special grounded design, forecasting, properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			¥ ±						
enzymatic processes in chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
chemical production. International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers Course Objective develop with a doctoral students' competencies in scientifically special grounded design, forecasting, properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
International environmental safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers Course Objective develop with a complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
safety and sustainability standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers with a complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			<u> </u>						
standards and regulations (REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers Course Objective develop with a doctoral students' complex of special grounded design, forecasting, properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
(REACH, ISO 14000). Case studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers Course Objective develop doctoral students' complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			1 -						
studies: successful implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers Course Objective develop with a doctoral students' competencies in scientifically grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
implementation of green technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers Course Objective develop with a doctoral students' complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
technologies in polymer production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers Course Objective develop with a doctoral students' complex of special grounded design, forecasting, properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
production, petrochemicals, and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers Course Objective develop with a doctoral students' complex of special grounded design, forecasting, properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
and pharmaceuticals. Final assessment - exam, defense of a project or research paper. 7 Polymers With a Course Objective develop with a complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
assessment - exam, defense of a project or research paper. 7 Polymers Course Objective develop with a doctoral students' competencies in scientifically special grounded design, forecasting, properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
a project or research paper. Polymers With a doctoral students' complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
Polymers Course Objective develop with a doctoral students' complex of special grounded design, forecasting, properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			-						
with a doctoral students' complex of special grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
complex of competencies in scientifically grounded design, forecasting, and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:	7	Polymers	Course Objective develop	5	V	V		V	
special grounded design, forecasting, properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			doctoral students'					1	
special grounded design, forecasting, properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:		complex of	competencies in scientifically						
properties and optimization of technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			grounded design, forecasting,						
technologies for producing polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			and optimization of						
polymer composite materials (PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
(PCMs) with a complex of special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
special properties, including the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
the ability to create innovative materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:									
materials with specified characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:								1	
characteristics for priority sectors of the economy, integrating principles of sustainable development and environmental safety. Content:								1	
sectors of the economy, integrating principles of sustainable development and environmental safety. Content:			-						
integrating principles of sustainable development and environmental safety. Content:									
sustainable development and environmental safety. Content:									
environmental safety. Content:									
								1	
			•					1	
The course prepares								1	
specialists capable of								1	
independently designing,			independently designing,				<u> </u>]	

	T		1		1	1	1		1
		conducting research, and							
		implementing in production							
		the technologies for							
		manufacturing PCMs with							
		unique performance							
		characteristics: high strength,							
		thermal stability, chemical							
		resistance, biocompatibility,							
		etc. Topics include: modern							
		classifications and							
		requirements for PCMs with							
		special properties;							
		relationships between							
		molecular structure,							
		supramolecular organization,							
		and performance;							
		technological processes of							
		PCM synthesis and							
		processing; principles of							
		selecting polymer binders and							
		fillers considering							
		sustainability and							
		environmental safety;							
		innovative directions: smart							
		polymers, self-healing							
		materials, biodegradable							
		composites; methods for							
		assessing durability and							
		reliability of PCMs under real							
		operating conditions; case							
		studies from aerospace,							
		medical, oil and gas, and							
		energy industries. Final							
		assessment - exam, defense of							
) f 1	a project or research paper.			-		-		
	Modern	Course Objective develop	5	V	V	V	V		
	catalytic	doctoral students' ability to							
		design and optimize							
		innovative catalytic processes							
	of polymers	for polymer synthesis with							
		specified properties,							
		considering sustainable							
		development, resource							
		efficiency, and environmental							
		safety. Content: Current trends							
		in catalytic polymer synthesis;							
		homogeneous, heterogeneous,							
		metallocene, and post-							
		metallocene catalysts;							
		polymerization mechanisms							
		(coordination, radical,							
1		recordination radical		ì	1	i			1
		cationic, anionic); influence of							

	Τ	1			ı	1	ı	
		monomer structure and						
		synthesis conditions on						
		polymer structure and						
		properties; methods of						
		modification and						
		functionalization; synthesis of						
		biopolymers and polymers						
		from renewable feedstock;						
		environmentally friendly and						
		resource-saving approaches;						
		modelling and optimization of						
		catalytic processes using						
		specialized software. Final						
		assessment - exam, defense of						
		a project or research paper.						
9	GTL	Course Objective develop	5	V	v	v		
		doctoral students' ability to	-	•				
		design, forecast, implement,						
		and optimize innovative						
		technologies for producing						
		synthetic liquid fuels from						
		natural and liquefied						
		petroleum gases (Gas-to-						
		Liquids, GTL), based on						
		advanced scientific						
		achievements in chemistry,						
		catalysis, kinetics, and process						
		engineering. Special attention						
		is given to sustainability,						
		energy efficiency, and						
		environmental safety, as well						
		as the integration of digital						
		models and modern design						
		tools. GTL technologies are a						
		key direction in producing						
		environmentally clean fuels,						
		diversifying energy sources,						
		and increasing national energy						
		independence. The course						
		builds competencies required						
		for the development and						
		implementation of advanced						
		gas processing technologies,						
		which is particularly relevant						
		for Kazakhstan in the context						
		of the global transition to a						
		low-carbon economy. Final						
		assessment - exam, defense of						
		a project or research paper.						
L		a project or research paper.			<u> </u>		l	

Curriculum of educational program

«APPROVED»

Decision of the Academic Council

NPJSC«KazNRTU

named after K.Satbayev»

dated 06.03.2025 Minutes № 10

WORKING CURRICULUM

Academic year 2025-2026 (Autumn, Spring)

Group of educational programs D097 - "Chemical engineering and processes"

Educational program

8D07116 - "Chemical technology of organic substances and materials"

The awarded academic degree

Doctor of Engineering (Industry)

Form and duration of study

1 om und	duration of study											(4			i) - 3 years	
Discipline	N			Total	Total	lek/lab/pr	in hours	Form of	Allo			face train		d on		
code	Name of disciplines	Block	Cycle	ECTS credits	hours	Contact hours	SIS (including TSIS)	control	1 co	urse	2 co	urse	3 course		Prerequisite	
							·		1 sem	2 sem	3 sem	4 sem	5 sem	6 sem		
	С	YCLE (OF GEN	ERAL E	DUCAT	ION DISC	TPLINES (GE	ED)								
CYCLE OF BASIC DISCIPLINES (BD)																
		M-1. 1	Module	of basic t	raining	(universit	y component)									
MET322	Methods of scientific research		BD, UC	5	150	30/0/15	105	E	5							
LNG305	Academic writing		BD, UC	5	150	0/0/45	105	E	5							
MNG350	Sustainability Science	1	BD, UC	5	150	30/0/15	105	E	5							
BIO322	Simulation and optimization of chemical engineering processes	1	BD, CCH	5	150	30/0/15	105	E	5							
CHE310	Complex processing of hydrocarbon raw materials	1	BD, CCH	5	150	30/0/15	105	E	5							
			CYCLE	OF PRO	FILE D	ISCIPLIN	ES (PD)									
			M-	5. Modul	le of fina	al attestati	on									
ECA325	Final examination (writing and defending a doctoral dissertation)		FA	12										12		
			M-4.	Experim	ental re	search mo	dule									
AAP372	Experimental research work of doctoral student, including internships and doctoral dissertations		ERWDS	5				R	5							
AAP376	Experimental research work of doctoral student, including internships and doctoral dissertations		ERWDS	10				R		10						
AAP374	Experimental research work of doctoral student, including internships and doctoral dissertations		ERWDS	30				R			30					
AAP374	Experimental research work of doctoral student, including internships and doctoral dissertations		ERWDS	30				R				30				
AAP374	Experimental research work of doctoral student, including internships and doctoral dissertations		ERWDS	30				R					30			
AAP375	Experimental research work of doctoral student, including internships and doctoral dissertations		ERWDS	18				R						18		
				N	lo modu	le										
AAP371	Industrial intership		PD, UC	20				R		20						
	N	1-2. Mo	dule of	professio	nal activ	ity (comp	onent of choic	ce)								
BIO323	Polymers with a complex of special properties	1	PD, CCH	5	150	30/0/15	105	E	5							
CHE314	GTL technologies	1	PD, CCH	5	150	30/0/15	105	E	5							
BIO324	Modern catalytic methods for the synthesis of polymers	2	PD, CCH	5	150	30/0/15	105	E	5							
CHE315	Green chemistry in the production of chemicals and materials	2	PD, CCH	5	150	30/0/15	105	E	5							
	Total based or	HNIVE	RSITV.						30	30	30	30	30	30		
	Iviai Dased of	OMIVE							6	0	6	60	6	60 60 60		

Number	of credits	for the	entire	neriod	of study

Cycle code	Cycles of disciplines	Credits			
		Required component (RC)	University component (UC)	Component of choice (CCH)	Total
GED	Cycle of general education disciplines	0	0	0	0
BD	Cycle of basic disciplines	0	15	0	15
	*				_

Non-profit Joint Stock Company «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATBAYEV»

PD	Cycle of profile disciplines	0	20	10	30
Total for theoretical training:		0	35	10	45
RWDS	Research Work of Doctoral Student				0
ERWDS	Experimental Research Work of Doctoral Student				123
FA	Final attestation				12
TOTAL:					180

Decision of the Educational and Methodological Council of KazNRTU named after K.Satpayev. Minutes № 3 dated 20.12.2024

Decision of the Academic Council of the Institute, Minutes № 3 dated 28.11.2024

Decision of the Academic Council of the Institute. Minutes № 3 dated 28.11.2024							
Signed:		5177-76. 18					
Governing Board member - Vice-Rector for Academic Affairs	Uskenbayeva R. K.		信的音》是				
Approved:							
Vice Provost on academic development	Kalpeyeva Z. Б.			自用的自然			
Head of Department - Department of Educational Program Management and Academic-Methodological Work	Zhumagaliyeva A. S.						
Director - Geology and Oil-gas Business Institute named after K. Turyssov	Auyelkhan Y						
Department Chair - Chemical and biochemical engineering	Mangazbayeva R. A.						
Representative of the Academic Committee from Employers Acknowledged	Seytenova G. Z.						